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The dynamics of vorticity in two-dimensional turbulence is studied by means of 
semi-direct numerical simulations, in parallel with passive-scalar dynamics. It is 
shown that a passive scalar forced and dissipated in the same conditions as vorticity, 
has a quite different behaviour. The passive scalar obeys the similarity theory ci la 
Kolmogorov, while the enstrophy spectrum is much steeper, owing to a hierarchy 
of strong coherent vortices. The condensation of vorticity into such vortices depends 
critically both on the existence of an energy invariant (intimately related to the 
feedback of vorticity transport on velocity, absent in passive-scalar dynamics, and 
neglected in the Kolmogorov theory of the enstrophy inertial range); and on the 
localness of flow dynamics in physical space (again not considered by the Kolmogorov 
theory, and not accessible to closure model simulations). When space localness is 
artificially destroyed, the enstrophy spectrum again obeys a k-l law like a passive 
scalar. In  the wavenumber range accessible to our experiments, two-dimensional 
turbulence can be described as a hierarchy of strong coherent vortices superimposed 
on a weak vorticity continuum which behaves like a passive scalar. 

1. Introduction 
In the past twenty years, a number of theoretical, numerical and experimental 

studies have been devoted to the understanding of two-dimensional flow dynamics. 
Activity in this particular branch of fluid mechanics started when the self-similar 
Kolmogorov theory of turbulence was extended to two-dimensional flows by Krai- 
chnan (1967), Leith (1968) and Batchelor (1969), who introduced the double-cascade 
concept, whereby enstrophy is carried from injection scales to small dissipation scales, 
while energy goes the other way and reaches ever larger scales in a supposedly infinite 
domain. A somewhat idealized picture of the two cascades as smooth, regular 
processes was later provided by closure-model calculations (Pouquet et al. 1975). But 
the whole theory remained somewhat academic in spite of its possible connections 
with atmospheric and oceanic large-scale flows (Wiin-Nielsen 1967 ; Desbois 1975 ; 
Morel & LarchevQque 1974) until truly two-dimensional flows were finally produced 
to a close approximation in laboratory experiments. Experimental evidence of the 
existence of reverse energy transfers was first obtained by Couder (1984) on thin liquid 
soap films, then by Sommeria (1985) in shallow mercury layer agitated by electrically 
driven vortices in a strong normal magnetic field. On the other hand, increasing 
computer power has led to accurate direct or semi-direct? numerical simulations of 
the enstrophy inertial range, which cannot at present be studied in the laboratory. 

t Involving a parameterization of the transfers to sub-grid scales. 
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Long-term simulations of two-dimensional turbulent flows in forced or decaying 
conditions, performed by Fornberg (1977), Basdevant et al. (1981), McWilliams 
(1984) all led to the interesting result that the energy spectrum in the enstrophy 
inertial range or in decaying flows could significantly deviate from the k-3 law 
expected from the Kolmogorov theory. Indeed, slopes from k-4 to k-6 were obtained, 
depending on the nature of the forcing; and always associated with the emergence 
of strong solitary, long-lived, coherent vortices. 

The similarity theory u la Kolmogorov (referred to as SK hereinafter) is too simple 
to account for the spectral variability and the spatial coherence obtained in numerical 
simulations: what we need is a more extensive understanding based on the multi- 
plicity of actual flow behaviours. Indeed, the whole concept of two-dimensional 
turbulence reduces to vorticity advection and its feedback on velocity. Vorticity 
advection - the stretching of vorticity isolines by velocity shears - is relatively easy 
to handle with simple arguments; it is the feedback on velocity which is difficult to 
take into account. The SK theory succeeds in handling the dynamics of a passive 
scalar which exerts no feedback on the velocity distribution; but it apparently fails 
in describing vorticity dynamics, because i t  sees no difference with the passive-scalar 
dynamics. This difference between vorticity and passive-scalar dynamics is precisely 
the key to a deeper understanding of two-dimensional turbulence, and it is the 
purpose of the present work to evaluate it. We shall rely upon semi-direct simulations, 
an approach which differs from previous investigators (Holloway & Kristmannsson 
1984 ; Lesieur & Herring 1985) ; these authors have mostly been using the statistical 
closure approach which does not take into account, for example, the capability of 
two-dimensional fluid dynamics to generate coherent vortices. 

2. Basic equations 
Incompressible fluid motion in two dimensions is governed by the vorticity 

equation 
%+ J($, 5) = F,- D,. 
at 

Here y is the vorticity, $ the stream function, J the Jacobian operator, Fc an external 
vorticity source and D, the vorticity sink associated with dissipation. Equation (1) 
shows that vorticity is simply advected by the flow in the absence of sources and sinks. 
In that case (F,- D, = 0) ,  energy 

are quadratic invariants of the motion; in (2) and (3) SZ is the flow domain. 

formally identical with (1) : 
The evolution of a passive scalar, or pollutant density 6, is governed by an equation 

%+ J($, 6)  = F,- D,, 
at (4) 

with corresponding pollutant sources and sinks ; in their absence (F,- D, = 0), (4) also 
has a quadratic invariant 

(5) X = Jkt2 dx dy, 
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which mcans that, like enstrophy, the total variance of the pollutant density is 
conserved. 

and $ in ( 1 )  are related by 
5 = Vz$, while 6 and $ in (4) are not related to each other. For this reason (4) has 
no invariant analogous to (2); or in other words, the correlation 

The important difference between ( 1 )  and (4) is that 

r r  

is not an invariant of the motion, even in the absence of sources and sinks. We shall 
see later that this rather obvious difference is in fact extremely important, as it 
induces fundamentally different dynamical properties for the two apparently iden- 
tical equations ( 1 )  and (4): the 'active' scalar 5 and the 'passive' scalar 6 will be seen 
to behave in quite different ways. 

Another important property of (1) and (4), now taken together, is the invariance 
of the correlation 

r r  

in the absence of sources and sinks. More generally if 
(i) the active and passive scalars 5 and 6 are initially decorrelated ( R  = 0 at 

t = 0); 
(ii) there is no correlation source; 
(iii) dissipation takes the general form 

D, = (8) 

where D($) is a linear, symmetric (positive definite) operator; then R remains zero 
at  all times: 5 and are free to evolve in quite different ways. Note that condition 
(iii) is generally verified by artificial viscosity schemes used in numerical models: for 
instance, the linear viscosity defined by an iterated Laplacian 

D, = 7-'(  -A2  V2)" 7 (9) 

(Basdevant et al. 1981), or a nonlinear viscosity like the 'anticipated vorticity' 
scheme (Sadourny & Basdevant 1981, 1985) : 

D7 = 7J($, ( -A2  V2)" J($, 7)) ; (10) 

here 7 and h are the characteristic time- and lengthscales associated with the 
numerical cutoff. 

3. Similarity theory, stability theorems and closure models 
The SK theory is not quantitative enough to distinguish between vorticity and a 

passive scalar. Taking for example the case of a stationary two-dimensional turbu- 
lence forced a t  wavenumber k,  with injection rates e (for energy) and z = ki e (for 
enstrophy), we obtain the SK estimate of the one-dimensional enstrophy spectrum 
Z ( k )  in the enstrophy inertial range by equating the constant enstrophy cascade rate 
z to the enstrophy available a t  wavenumber k ,  divided by the characteristic time of 
nonlinear transfers 7 ( k )  : 

13-2 
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7(k) is estimated from a root-mean-square measure of velocity gradients at scales 
larger than k- l :  

7(M = ( IOkZ@) dP)-'. (12) 

Elimination of 7(k) between (1  1 )  and (12) yields the familiar enstrophy spectrum 
(Kraichnan 1971) 

It can be shown (Monin & Yaglom 1965, $22; and Frisch 1987) that relation (11) relies 
on the assumption that the scale invariance of the Euler equation is recovered within 
the inertial range. Indeed, scale invariance appears violated in dimension two by 
relation (12), which introduces the logarithmic correction to the power law observed 
in (13). More importantly, the derivation of (13) is independent of the existence of 
an energy invariant, or in other words, of the physical relationship between $ and 
5 which embodies the feedback of vorticity dynamics on velocity. Precisely for this 
reason, the same argument, applied to a passive scalar injected at  the same 
wavenumber L,, yields the same spectral distribution (Lesieur & Herring 1985). 
Denoting by X ( k )  the one-dimensional power spectrum of and by x its cascade rate, 
we write instead of (1 1) 

Z ( L )  = CzW(1n k)-% (13) 

and, by eliminating ~ ( k )  and Z(k) between (12), (13) and (14), 

X ( k )  = C'z*xk-l(In Ic)-t. (15) 

This complete analogy of behaviour between vorticity and the passive scalar is likely 
to be a gross oversimplification owing to the limitations of the SK theory, as the 
feedback of vorticity transport on velocity clearly brings very strong constraints on 
vorticity dynamics. We know from simple examples dealing with parallel flows that 
vorticity gradients may have a stabilizing effect on smaller-scale vorticity structures. 
This is readily seen from the linear stability theory (e.g. Lin 1967) which yields, as 
a necessary condition for instability, the vanishing of the vorticity gradient across 
the mean flow, a result recently confirmed in the fully nonlinear case, by a Liapunov 
stability theorem derived by McIntyre & Shepherd (1987) - see also Shepherd (1987). 
It is quite clear from both demonstrations that such stability results are crucially 
dependent on the $-C relationship; they are specific of vorticity dynamics and do 
not hold for the scalar. For more general (not necessarily parallel) quasi-stationary 
flows, one stabilizing mechanism appears to be the tendency of a vorticity gradient 
to induce a propagation of smaller-scale perturbations of the vorticity field towards 
its left. This propagation is ordinarily mixed with straining, except in the limiting 
case of the pure beta-effect on the beta-plane. Several authors (Rhines 1975; 
Holloway & Hendershott 1977 ; Legras 1980) have shown that the beta-effect indeed 
inhibits energy or enstrophy transfers, one of the consequences being a steepening 
of the spectral slope in the enstrophy inertial range. It is therefore quite possible that, 
even in the absence of an external beta-effect, the presence of quasi-stationary 
internal vorticity gradients, by mixing straining with propagation, induce compar- 
able inhibitions of enstrophy transfers across the inertial range, steepening the 
spectral slope beyond the SK expectation. 

Closure models are much more quantitative than the SK theory : they involve triad 
interaction coefficients which differ in the vorticity and passive-scalar cases, because 
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of the symmetry properties associated with the $4 relationship. We may thus expect 
them to represent, at least up to some point, these statistical stabilizing effects of 
vorticity gradients. This has indeed been verified by Holloway & Kristmannsson 
(1984); however, these authors, like Lesieur & Herring (1985) have found identical 
asymptotic behaviour for enstrophy and passive-scalar variance, except perhaps for 
differences in the values of the multiplicative constants. This can be readily 
understood if we note that, in the enstrophy inertial range of a closure model, the 
enstrophy transfer through wavenumber k is mainly due to a set I of non-local 
interactions (k’, p ,  q )  with q < k‘ < k < p ; while the energy conservation is recovered 
by an inverse flux due to a separate set I1 of interactions with k’ k < p x q :  on 
this point, see for instance Basdevant, Lesieur & Sadourny (1978). Interactions of 
type I transfer enstrophy and passive-scalar variance in the same way; on the other 
hand, the enstrophy transfer associated with interactions of type I1 (i.e. with the 
presence of an energy invariant, or with the $-5 relationship, or in other words, with 
the feedback of vorticity transport on velocity) is negligible. Thus, asymptotically, 
the closure models will not distinguish between passive scalars and vorticity. 

4. A numerical experiment 
A forced stationary, turbulent, two-dimensional incompressible flow regime is first 

simulated using a 128x 128 point spectral model on the 2nL-periodic plane 
(Basdevant et al. 1981). Forcing is imposed by assigning a constant value to the 
amplitude of a given Fourier mode, here sin 4yJL. Dissipation includes a large-scale 
‘friction’ in addition to the iterated Laplacian (9) with n = 8: 

D, = (--(-A2V2)8-- 1 e L-2V-2 )5. 

The first term in the bracket is designed mainly to dissipate enstrophy at the largest 
resolved wavenumbers (k < A - l )  with a timescale equal to the eddy-turnover time 
at  the cutoff scale A :  8 = T ( A - ~ ) .  The second term mainly dissipates energy at the 
largest scales (k > L-l) with a time scale 8’. This model was integrated from initial 
conditions characterized by an exponentially decaying spectrum and random phases. 
The numerical integration was pursued long enough to reach a stationary regime for 
the enstrophy spectrum. The instantaneous enstrophy spectrum at a time t = to of 
this stationary final regime is shown in figure 1 ; it practically does not vary thereafter. 
We note that in contrast to the prediction (13), this enstrophy spectrum can be much 
steeper than k-’ (here for 20 < k < 50), a behaviour already observed in numerical 
experiments by several authors, including Fornberg (1977), Basdevant et al. (1981) 
and McWilliams (1984). Also, as reported by all these authors, the vorticity chart 
a t  t = to (figure 2a) is remarkable by the presence of a number of strong, isolated, 
quasi-circular vortices, which have very long lifetimes compared to the more 
turbulent-like surrounding structures. 

These features are shared by a large number of numerical simulations performed 
with a wide range of forcing mechanisms, deterministic or random (Basdevant et al. 
1981), or a large class of initial conditions in the case of decay experiments 
(McWilliams 1984). Basdevant et al. (1981) have shown that they persist in the 
presence of the /3-effect, although a strong tendency towards zonal snisotropy is also 
observed in this case. It has been suggested by Herring & McWilliams (1985) that 
the wavenumber span 0 < k < 64 was too small to adequately test an inertial range. 
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FIGURE 1. Enstrophy and passive-scalar variance spectra at t = to, when Z(k ,  to) = X ( k ,  to).  The 
arrow indicates the injection wavenumber. 

They show that a closure model, known to develop a k-l range at high resolution, 
exhibits a k-2 slope with our resolution. This behaviour might be characteristic of 
the closure approach as the authors show also that direct numerical simulations yields 
the same k-2 spectrum in resolutions 128 x 128 and 256 x 256. Basdevant et al. (1981) 
computed the enstrophy fluxes and found them to be constant over the whole range 
of the observed power law; this is probably the best proof of the existence of an 
enstrophy inertial range. We must agree however that the present resolution, 
although perhaps sufficient to study the large-scale dynamics, does not allow a direct 
test of asymptotic laws at small scales and that the observed slopes may differ in a 
more extended enstrophy inertial range. This is why we give here (equation (17)) a 
technique to test the Kolmogorov theory precisely, even at  a moderate resolution 
like ours. 

A more serious question arises from the observation of k-' enstrophy spectra 
reported recently in high-resolution decay experiments by Brachet, Meneguzzi & 
Sulem (1986) and Kida (1985). In these simulations, there is no generation of coherent 
vortices, but instead, an iterative piling up of vortex sheets which prevents the 
generation of steeper spectra. We must observe that, starting from flows initially 
confined to the largest scales, these experiments might have been integrated for an 
insufficiently long time to develop vortex structures. Indeed, some very recent com- 
putations (Santangelo, Paternal0 & Benzi 1987 ; R. Benzi, private communication) 
suggest the existence of a metastable k-l regime in which a decay flow may enter 
provided its initial spectrum is sufficiently steep, and whose duration increases with 
the Reynolds number. 

A t  time t = to ,  a passive scalar f was injected into the flow. The initial condition 
for f was defined by taking the vorticity field at  t = to, and keeping constant the 
amplitudes of all Fourier modes while resetting phases at  random. The initial spectra 
X ( k ,  to ) ,  Z ( k ,  to) are therefore identical (figure l ) ,  but the correlation R(k, to)  is close 
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FIQURE 2. (a) Vorticity and (b )  passive-scalar fields at t = to. 
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FIQURE 3. (a) Enstrophy and (a) passive-scalar variance spectra a t  t = t , ;  the third spectrum ( c )  

is the Kolmogorov estimate X ( k ) .  The arrow indicates the injection wavenumber. 

to zero. Figure 2 ( b )  shows the passive-scalar field a t  t = to : all the organized structures 
visible in figure 2 (a ) ,  in particular the circular vortices, have been destroyed by the 
random phase shifts. From to onward, [ was forced like 6, by holding the amplitude 
of its Fourier mode cos 4y1/L constant ; thus X and Z are injected at the same scale, 
but the correlation source is zero. Finally, was dissipated exactly like vorticity, using 
the same operator (16) with the same timescales. We have seen in $2 that for such 
initial, forcing and dissipation conditions, R will remain close to zero at all times. 
Therefore, in the course of our simulation, 6 and 6 remain approximately decorrelated 
although their evolution is governed by strictly identical equations. The only 
difference between the two quantities is that [ is passive with respect to the flow (in 
other words, independent of $), while 6 is not. 

The 6- and [-equations were thus integrated from t = to onward, until a stationary 
regime was found for the passive-scalar spectrum. Figure 3 shows the two spectra 
Z ( k ,  t , ) ,  X ( k ,  t,) at a time t = t, within this stationary regime. The two spectra, which 
were identical at t = to (figure 1), have now departed significantly from each other. 
As expected, Z ( k )  has not varied much from to to t,; but X ( k )  has lost most of its 
initial steepness, being now close to the k-l law of the SK theory. Note however that 
(15) was established using (13), which is not verified by our calculations: therefore, 
the whole argument is at fault, in the form used in $3, and we cannot test directly 
the observed spectrum for the passive scalar against (15). 

We may however reformulate the SK theory in a weaker form in order to show 
its validity for the passive-scalar dynamics. We do this in the following way: first 
we compute a direct estimate of the characteristic transfer time ~ ' ( k )  in our model 
flow by applying (12) to the simulated enstrophy spectrum Z ( k ,  t l )  ; then we compute 
an estimate of the passive-scalar spectrum X'(k )  by using the basic relation (14) : 

X ( k )  = 2 k P 7 / ( k ) .  (17) 

X'(k)  is shown in figure 3, together with Z ( k ,  t , ) .  It behaves asymptotically as k-,, 
due to the fast decrease of Z ( k ,  t,) which ensures rapid convergence of the integral 



Vorticity and passive-scalar dynamics in two-dimensional turbulence 387 

in (12). The fact that X’(k)  is asymptotically independent of the slope of Z ( k )  as soon 
as the latter decreases fast enough with k must be put in relation to the saturation 
effect of structure-function slope under the same condition (Babiano, Basdevant & 
Sadourny 1985). Moreover, it fits the simulated passive-scalar spectrum X ( k ,  t l )  
rather well in the wavenumber band (k , ,k , )  when multiplied by an appropriate 
constant. The present technique allows a much better verification of the SK theory 
than the usual simpler technique of direct exponent fitting, which would have led 
here to an apparently steeper law. It tells us that the computed variance spectrum 
of the passive scalar is indeed consistent with the form expected from (15). 

5. The mechanisms of coherent vortex formation 
The comparison of vorticity and pollutant charts a t  t = t, (figure 4) sheds some light 

on this disparity of spectra. In terms of shape of the isolines the two fields are quite 
similar, which must be expected as they are both strained by the same velocity field. 
Note that in spite of the similarity of shapes, the correlation R remains close to zero, 
because the sign of the passive scalar is not correlated to the sign of vorticity. The 
main difference between the two fields lies in the distribution of the intensity of 
structures. As already mentioned, the vorticity field is dominated by strong coherent 
quasi-circular vortices whose high level of excitation contrasts with the relativity 
weak, elongated, ‘turbulent ’ - like structures filling the remaining space. Nothing 
similar is observed in the scalar field, which does not accumulate within the vortices 
but is essentially carried, strained and mixed by the vortices in the background 
region. A consequence of this, clearly visible in figures 10 and 11 of Holloway & 
Kristmannsson (1984), is that a spot of scalar which does not initially intersect any 
vortex, in their words, ‘homogenizes rather ineffectively despite the fact that tracer 
has been dispersed over scales larger than characteristic eddy fields ’. 

The generation of coherent vortices seems to be a generic property of two- 
dimensional turbulence, associated with steep spectra. Coherent vortices can emerge 
from random forcing or random initial conditions, as observed by Basdevant et al. 
(1981) in the stationary forced case, or McWilliams (1984) for decaying flow. They 
are remarkably stable, being able to maintain themselves for as long as several 
hundreds of their own eddy-turnover times. Their quasi-circular shape makes them 
close to local solutions of the Euler equation in which the nonlinear term is strongly 
inhibited. However, they occasionally undergo non-axisymmetric oscillations 
(McWilliams 1984) without loss of stability. The presence of coherent vortices always 
leads to spectra steeper than expected from the classical prediction. Studying their 
emergence in two-dimensional decaying turbulence, McWilliams (1984) traces them 
back to initial vorticity maxima, describing them as structures robust enough to be 
unaffected by the enstrophy cascade. In  forced two-dimensional turbulence, coherent 
vortices seem to be generated in the enstrophy-cascading inertial range : all vortices 
observed in figure 2 ( a ) ,  for example, have scales smaller than the injection scale. 
Vortices are observed at various scales, but we have to wait for really high-resolution 
experiments to decide whether or not there can be a full hierarchy of vortices at all 
scales, throughout the whole enstrophy inertial range. What happens in the energy 
inertial range - a question of interest for atmospheric and oceanic dynamics - remains 
a widely open question; very few studies (Frisch & Sulem 1984) have tackled the 
problem of simulating properly the reverse energy cascade. 

Stability is of course the key question of coherent vortex dynamics. For a passive 
scalar superimposed on a circular vortex, any non-axisymmetric perturbation 
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FIQURE 4. (a) Vorticity and ( b )  passive-scalar fields at t = t,. 
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k 

FIGURE 5. Enstrophy spectra from the ‘random phase’ model experiment: (a) at t = to;  (a) at 
t = t,. The - 1 slope is indicated. 

induces a rapid diffusion by shear mixing (Rhines & Young 1983) if the vortex is not 
a solid rotation ; this eventually leads to complete homogeneization of the passive 
scalar inside the v0rtex.t A similar behaviour has been predicted by Rhines & Young 
(1982) for vorticity itself, i.e. that the eddy flux of vorticity would tend to dissipate 
the mean gradient. Numerical simulations lead us to the opposite conclusion, that 
non-uniform vorticity concentrations are generated and maintained through up- 
gradient eddy vorticity fluxes. Indeed, vorticity differs from a passive pollutant in 
the fact that any perturbation of vorticity means an advective perturbation which 
may eventually restore equilibrium (see $3). In this process the local correlation 
between stream function and vorticity (which on the global scale corresponds to the 
energy invariant, non-existent in passive-scalar dynamics) must play an important 
role. 

Leith (1985) has provided an enlightening description, or even explanation, of 
coherent vortices in terms of his ‘minimum enstrophy vortex ’ model, whose structure 
minimizes the enstrophy for given energy and angular momentum. Coherent vortices 
appear to be generated by systematic interaction$ of eddies of the same sign (while 
eddies of opposite sign just move around each other without merging). Vortex 
build-up through single-sign eddy interaction is a slow local reverse energy cascade 
process : the two necessary ingredients for coherent vortex formation are energy 
conservation (or more precisely: feedback of vorticity advection on velocity), and the 
fact that straining processes are local in physical space (see again $3). These two 
properties are obviously overlooked in the SK theory of the enstrophy inertial range, 

t However, in a decay flow with the same diffusion applied to the passive scalar and the vorticity, 
a passive scalar with an initial distribution proportional to the vorticity conserves this property 
throughout the evolution. 

$ The difference between interaction and simple aggregation must be clearly stated. Patches of 
quasi-uniform vorticity concentration occasionally occur in numerical simulations, but they remain 
clearly distinguishable from coherent vortices ; in particular, their lifetime is relatively short, owing 
to weak stability. 



390 A .  Babiano, G.  Basdevant, B .  Legras and R. Sadourny 

which explains its inadequacy in the fact of numerical simulations. We must look 
at  coherent vortices as local terminations of reverse energy cascade processes within 
the enstrophy inertial range, reaching an orderly robust shape, strong enough to 
become unperturbed by the relatively weak surroundings upon which it has already 
fed, and thus being unable to reach the scales of the energy inertial range (Sadourny 
1985). 

There is no such thing as an energy invariant for the passive scalar, hence no reverse 
energy cascade. This is why we do not obtain, in the pollutant field, anything 
resembling the coherent vortices. The other way to break the coherent-vortex 
generation is to disrupt the locality of straining processes in the physical space, which 
again destroys the local stabilizing effect of vorticity gradients. This can be illustrated 
by the following experiment: we take the same model of the two-dimensional 
Navier-Stokes equation as used for the control simulation, with the same initial 
conditions, forcing and dissipation, but at every time-step, we destroy the spatial 
coherence by resetting the phases of all Fourier modes at random. Since we keep 
constant the amplitudes of all modes, the perturbed model remains energy and 
enstrophy conserving but its ability to generate coherent structures is of course 
totally disrupted, exactly like a statistical closure model. The spectrum produced in 
the stationary regime of this ‘random-phase’ model is shown in figure 5: it  indeed 
follows the SK law in E l .  Note that the random-phase model has exactly the same 
quasi-normal closure as the original equations : EDQNM theory would therefore be 
unable to explain the very steep spectrum obtained in our numerical experiments. 
The steep spectrum here is the spectral signature of coherent vortices, whose 
description is beyond the reach of closure models. 

6. Exploring the turbulent medium 
The coherent vortex emerging from disorganized turbulent surroundings is a 

relatively vague notion which needs clarification by a quantitative approach. The 
two characteristic properties which a t  first sight identify the coherent vortex are its 
relatively high level of excitation and its relatively round shape. There is however 
no obvious threshold value that would unambiguously characterize it in terms of 
excitation level; and on the other hand, its shape constantly undergoes slight 
vacillations as the vortex interacts weakly with the turbulent medium. One possible 
way to separate the coherent vortex from its surroundings is to use an a priori model 
such as Leith’s (1985) minimum enstrophy vortex model, and fit it to the vorticity 
field in some root-mean square sense. Here we shall follow a cruder but simpler 
approach, which will nevertheless bring out some interesting conclusions concerning 
the underlying structure of the turbulent field. 

Taking advantage of the facts that coherent vortices occupy a small portion of 
space and have much stronger amplitudes than the remaining field, we may try to 
get rid of them by just ‘ clipping ’ the vorticity field. We call the following operation 
performed on a scalar field r(z,y) ‘clipping’, and it is meant to suppress all values 
in excess of a given parameter a > 0: 

if r(z,  y) > a ,  
if --a < 7(z, y) < a ,  7&? Y) = r ( x ,  9)  

[:a if ~(z, y) < -a. 

At first sight, applying the clipping operation to the vorticity field is not a clean way 
of suppressing vortices, but we shall nevertheless try it. Let us first clip the 
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FIGURE 6. Effect of clipping: (a) on the passive-scalar variance spectrum X, (k ) .  From top to bottom: 
a = 1, !j, i, &, $, & the maximum value of 1". (a) On the enstrophy spectrum Z,(k).  From top to 
bottom: a = 1, !j, 4, &, &, the maximum value of 161. The - 1 slope is indicated. 

passive-scalar field; the result in terms of power spectra X,(k)  for various values of 
a is shown in figure 6 ( a ) .  The striking fact is the robustness of the k-l law to the 
clipping operation. Even more importantly, we see that strong clipping preserves local 
fluctuations around the mean slope, but destroys the high-wavenumber bias due to 
the artificial dissipation range, and the low-wavenumber bias due to the fact that 
the k-' law is only asymptotic (remember figure 3 and the X'(k)-behaviour). It thus 
seems that the very crude technique of clipping indeed preserves the memory of the 
underlying k-l law, even for very small a when the only memory of the field is its 
sign or in other words the shape of the zero isoline.? 

t Notice that the singularities in the derivatives of the vorticity field induced by the clipping 
produce a k-4 enstrophy spectrum which can hardly mask a t-' spectrum. 
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Clipping now the vorticity field (figure 6 b ) ,  we observe a very different spectral 
behaviour, with strong sensitivity of the spectral shape for relatively large values of 
a. As a increases, the steep spectral slope rapidly levels off, and the clipped enstrophy 
spectrum converges to a clean k-' law just like the passive scalar. This is consistent 
with our previous remarks that the passive scalar and vorticity have almost 
coincident isolines, and that the shape of the zero isoline is a remarkably good 
indicator of a k-' spectral slope. Obviously the clipping process first destroys the 
strong coherent vortices, which explains the initial sensitivity of the spectrum to 
decreasing a ;  what remains afterwards (the shape of isolines) is the indicator of the 
surrounding medium. This shows that the medium that surrounds the coherent 
vortices in the vorticity field is indeed a field of passive-scalar type with its underlying 
k-' law : the dynamical interpretation of this behaviour is straightforward. 

7. The enstrophy cascade revisited 
We now see the turbulent medium inbetween vortices as a passive field mainly 

strained by a set of isolated vortices which contribute most of the energy in the 
spectrum and therefore, determine the straining timescale. In  figure 7 ,  we show the 
spectral fluxes of enstrophy and passive-scalar variance in two experiments, the 
experiment described above and another one where the forcing was set at wave- 
number 10 instead of wavenumber 4; all fluxes shown on figure 7 are instantaneous 
fluxes taken a t  the same time t = t , .  We see that the same straining is more efficient 
a t  transferring passive-scalar variance than a t  transferring enstrophy . This is 
consistent with the fact that coherent vortices are structures that tend to protect 
themselves from enstrophy dissipation. The higher efficiency of passive-scalar 
transfers was noticed by Holloway & Kristmannsson (1985), who gave the case of 
a narrowband spectrum as a typical example. This perhaps unrealistic situation is 
easily superseded by the existence of local relations between the vorticity and the 
stream function in the domain spanned by the vortices. We also note that the fluxes 
of pollutant variances are smoother than the enstrophy fluxes: this is again 
understandable, because in the flow dynamics, the relatively smooth enstrophy 
cascade which takes place in the turbulent medium is not efficient enough and must 
be supplemented by relatively intermittent inelastic interactions taking place among 
a limited number of isolated vortices. 

The most dramatic vortex interaction is the collision of two vortices of the same 
sign, which produces a coalescence into a single new vortex. Conversely the 
interaction between two vortices of opposite sign is non-destructive and generally 
temporary. The addition of the velocity field of the two vortices generates a strong 
velocity along the axis; the couple then travels under its own velocity field, much 
faster than the characteristic velocity of the turbulent medium : the two vortices are 
then unable to interact and will eventually separate without major deformation when 
encountering other vortices (Basdevant, Couder & Sadourny 1985). The pairing 
mechanism, here observed in homogeneous conditions, was observed in shear flows 
by Winant & Browand (1974) and numerically simulated by several authors (see for 
instance Corcos 1983; Staquet & Lesieur 1987). Vortices of the same sign, on the 
contrary, interact as shown in figure 8 (see also McWilliams 1984) : they turn around 
each other, getting closer and closer until they finally aggregate, expelling enstrophy 
along vorticity spirals. The whole process is a clear illustration of the reverse energy 
cascade, locally associated with the cascade of enstrophy: the resulting vortex of 
figure S ( j )  has a larger scale than the two  incident vortices of figure 8(a) .  
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FIGURE 7. Enstrophy (&) and passive-scalar (F!) fluxes in spectral space at t = t, ,  for the two 
experiments (a and a). All fluxes are counted positively towards large scales. 

8. Conclusion 
The simple similarity theory d la Kolmogorov sees no difference between vorticity 

and passive-scalar dynamics. What we have tried to show here is that this difference 
is indeed the key point for deriving a more realistic theory. We have shown for 
example, that the unexpectedly steep spectra obtained in numerical simulations of 
the enstrophy inertial range, are not observed in the case of a passive scalar, forced 
and dissipated in strictly similar ways. A major difference between passive scalars 
and vorticity consists in the capacity of the latter to organize itself into sporadic, 
strong, coherent vortices. These vortices are relatively stable structures, generated 
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and maintained against enstrophy cascade and dissipation by up-gradient eddy 
fluxes, locally needed to ensure the strict conservation of energy by nonlinear 
processes. Such up-gradient eddy fluxes cannot be observed in the passive-scalar 
dynamics, owing to the absence of an energy invariant that would maintain a 
correlation between the scalar and the stream function, or in other words, impose 
a retroaction of the scalar advection on velocity: thus the passive scalar is able to 
obey the spectral law predicted by simple self-similarity arguments, while vorticity 
is not. But note that energy conservation by itself does not explain the steep 
enstrophy spectra, as shown by our ‘random phase model’ experiment: it is the 
localness in physical space, associated with energy conservation, that enables 
coherent structures to form and produce strong spectral steepness. This effect of 
coherent vortices on the spectral slope cannot be properly reproduced by statistical 
closure models which also assume a random distribution of phases. 

The coherent vortices which appear in the enstrophy inertial range are so strong 
that the slope of the energy spectrum just reflects their distribution in amplitude and 
scale. This means that the activity of the flow is mainly concentrated in a hierarchy 
of vortices which occupy a very small portion of the physical domain, but nevertheless 
determine the straining timescales. Then the weakly excited vorticity field around 
and in between vortices can be expected to behave as a passive scalar : this speculation 
is indeed corroborated by our clipping analysis, which indicates, after removing 
vortices, a background enstrophy spectrum followings the k-l law. In  other words, 
in spite of the differences noted above and producing the vortices, vorticity dynamics 
remains a passive-scalar dynamics almost everywhere. This separation of the 
vorticity field into an active component determining the nonlinear timescales, and 
a passive component submitted to the cascade process, makes the concept of an 
universal power law not obviously relevant to the enstrophy inertial range (on this 
point, see also Babiano et al. 1985). The almost exclusive attention focused on the 
power spectrum during two’ decades was probably a consequence of the popularity 
of statistical closures during this period and the fact that the slopes of the power 
spectrum is the only flow characteristic that can be analysed by the closure approach. 
Clearly, the power spectrum is an incomplete signature of the dynamical behaviour ; 
the distribution of coherent vortices, their generation processes and stability pro- 
perties play an essential role. 

We do not know yet how the energy distribution of the coherent vortices in the 
enstrophy inertial range is determined. The relatively large fluctuations of the 
spectral slope from one experiment to another, depending on the location and nature 
of the forcing, tend to support the non universality of the distribution law, at  least 
near the injection scale. A more convincing study of this problem would require 
higher-resolution experiments to look for asymptotic laws. The other problem is the 
investigation of the energy inertial range, in which the fate of coherent structures 
has not yet been adequately studied by numerical modelling. 

The authors would like to thank G. Holloway, whose comments led to several 
improvements of the text. The computations were performed at the LMD with the 
help of R. M. Philippe. The manuscript was typed by M. C. Lanceau and M. C. Cally. 
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